PHASE II

ENVIRONMENTAL SITE ASSESSMENT

ACME Gas
55 Garden Street
Columbus, Ohio, 45123

Prepared for

ACME Oil and Gas Ltd.

Prepared by

GAEA Technologies Ltd.
87 Garden Street
Columbus, Ohio
45976

June 24, 2005
2005-10028
June 24, 2005
Ref. No. 2005-10028

ACME Oil and Gas Ltd.
350, 55 Avenue
Houston, Texas

Attention: ACME Oil and Gas Ltd.

Re: Phase II Environmental Site Assessment Report
ACME Gas, 55 Garden Street, Columbus, Ohio, 45123

GAEA Technologies Ltd. is pleased to submit our report describing the findings of the Phase II Environmental Site Assessment of ACME Gas. This assessment was prepared in general accordance with the American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process (ASTM Designation: E1903-97, Re-approved 2002).

The purpose of the Phase II ESA was to evaluate the recognized environmental conditions identified in the Phase I ESA or transaction screen process for the purpose of providing sufficient information regarding the nature and extent of contamination to assist in making informed business decisions about the property; and where applicable, providing the level of knowledge necessary to satisfy the innocent purchaser defense under CERCLA.

If you have any questions or require further clarification of the report findings, please contact the undersigned at your convenience. Thank you for the opportunity to be of service to ACME Oil and Gas Ltd..

Yours very truly,

GAEA Technologies Ltd.

John Smith, PE
Sr. Assessor

Jane Doe, PE
Manager
TABLE OF CONTENTS

TABLE OF CONTENTS .. 3
1.0 EXECUTIVE SUMMARY .. 5
2.0 INTRODUCTION .. 6
 2.1 Purpose ... 6
 2.2 Scope of Services .. 6
 2.3 Special Terms and Conditions .. 6
 2.4 Limitations and Exceptions of Assessments .. 7
 2.5 Limiting Conditions and Methodologies Used ... 7
3.0 BACKGROUND ... 7
 3.1 Site Description and Features ... 7
 3.2 Physical Setting .. 8
 3.3 Site History and Land Use .. 8
 3.4 Adjacent Property Use .. 8
 3.5 Summary of Previous Assessments .. 8
4.0 PHASE II ACTIVITIES ... 9
 4.1 Scope of Assessment .. 9
 4.1.1 Supplemental Record Review ... 9
 4.1.2 Conceptual Site Model and Sampling Plan ... 9
 4.1.3 Chemical Testing Plan .. 9
 4.1.4 Deviations from the Work Plan .. 9
 4.2 Field Explorations and Methods ... 10
 4.2.1 Test Pits ... 10
 4.2.2 Test Borings .. 10
 4.2.3 Monitoring Well Installations ... 10
 4.2.4 Other .. 10
 4.3 Sampling and Chemical Analyses .. 11
 4.3.1 Soil .. 11
 4.3.2 Ground water .. 11
 4.3.3 Other .. 11
5.0 EVALUATION AND PRESENTATION OF RESULTS .. 11
 5.1 Subsurface Conditions .. 11
 5.1.1 Geologic Setting ... 11
 5.1.2 Hydrogeologic Conditions ... 11
 5.1.3 Verification of Conceptual Site Model .. 12
 5.2 Analytical Data .. 12
 5.2.1 Soil .. 12
 5.2.2 Ground water .. 12
 5.2.3 Other ... 12
6.0 DISCUSSION OF FINDINGS AND CONCLUSIONS ... 13
 6.1 Recognized Environmental Conditions .. 13
 6.2 Affected Media ... 13
 6.3 Evaluation of Media Quality .. 13
7.0 RECOMMENDATIONS .. 14
8.0 CLOSURE ... 15
REFERENCES AND SOURCES OF INFORMATION .. 16
TABLES .. 17
 TABLE 1: Location, Depth and Type of Samples Collected ... 17
 TABLE 2: Summary of Soil Analytical Results – BTEX (ppm) .. 17
TABLE 3: Summary of Groundwater Analytical Results – BTEX (ppb) .. 17
FIGURES .. 18
 Figure 1: Site Location ... 18
 Figure 2: Site Plan and Exploration Location Plan .. 19
APPENDIX X1: SUBSURFACE EXPLORATION LOGS .. 20
APPENDIX X2: LABORATORY REPORTS .. 26
APPENDIX X3: OTHER INFORMATION .. 27
1.0 EXECUTIVE SUMMARY

ACME Oil and Gas Ltd. engaged GAEA Technologies Ltd. to conduct a Phase II Environmental Site Assessment (ESA) of the property ACME Gas located at 55 Garden Street, Columbus, Ohio, 45123 subsequently referred to in this report as "the property". This assessment was prepared in general accordance with the American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process (ASTM Designation: E1903-97, Re-approved 2002).

The purpose of the Phase II ESA was to evaluate the recognized environmental conditions identified in the Phase I ESA or transaction screen process for the purpose of providing sufficient information regarding the nature and extent of contamination to assist in making informed business decisions about the property; and where applicable, providing the level of knowledge necessary to satisfy the innocent purchaser defense under CERCLA.

The recognized on-site environmental concerns assessed as part of this Phase II ESA were the presence of underground fuel storage tanks. The assessments performed to evaluate the recognized on-site environmental conditions were 5 borings were drilled and sampled, 3 of the borings had monitoring wells installed, 6 soil samples and 3 groundwater samples were analysed for BTEX. The results of these assessments were all of the soil and two of the groundwater samples had measured concentrations of BTEX below the ARARs, one groundwater sample from B101 had slightly elevated concentrations of benzene and xylene.

The following recognized environmental concerns for the subject property were not assessed as part of this Phase II ESA: the possible presence of asbestos containing materials in the building was investigated separately as part of an ACM Survey. The findings and conclusions presented in this report apply only to the recognized environmental conditions assessed.

Based on the results of this assessment, no impacted soil above applicable or relevant and appropriate requirements ("ARARs") was identified.

Based on the results of this assessment, impacted groundwater above applicable or relevant and appropriate requirements ("ARARs") was identified. The measured concentrations of benzene and xylene were slightly above the ARARs in monitoring well B101.

The data gathered during this assessment is sufficient to determine whether hazardous substances or petroleum products were released or disposed at the property.

With respect to the recognized environmental conditions assessed, hazardous substances or petroleum products have been released or disposed on the property. The groundwater sample from monitoring well B101 had concentrations of benzene and xylene slightly above the ARARs.

Based on the results of this assessment the following further work is recommended:

- That the groundwater continue to be monitored for BTEX, as well as Biological Oxygen Demand (BOD), Dissolved Oxygen (DO), NO5, and SO4 on an annual basis to verify that natural attenuation is occurring and that the benzene and xylene concentrations decline in monitoring well B101.
2.0 INTRODUCTION

ACME Oil and Gas Ltd. engaged GAEA Technologies Ltd. to conduct a Phase II Environmental Site Assessment (ESA) of the property ACME Gas located at 55 Garden Street, Columbus, Ohio, 45123 subsequently referred to in this report as "the subject property". This assessment was prepared in general accordance with the American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process (ASTM Designation: E1903-97, Re-approved 2002).

The Phase II ESA was authorized by the Client on May 18, 2005.

2.1 Purpose

The purpose of the Phase II ESA was to evaluate the recognized environmental conditions identified in the Phase I ESA or transaction screen process for the purpose of providing sufficient information regarding the nature and extent of contamination to assist in making informed business decisions about the property; and where applicable, providing the level of knowledge necessary to satisfy the innocent purchaser defense under CERCLA.

2.2 Scope of Services

The scope of work for this assessment was in general accordance with the American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process (ASTM Designation: E1903-97). These methodologies are described as representing good commercial and customary practice for conducting a Phase II ESA of a property for the purpose of evaluating recognized environmental conditions.

Specifically, the scope of work included the following tasks:

- Review of Existing Information
- Field Exploration
- Sampling and Chemical Analyses
- Evaluation of Results
- Discussion of Findings and Conclusions

2.3 Special Terms and Conditions

The following recognized environmental concerns for the subject property were not assessed as part of this Phase II ESA: the possible presence of asbestos containing materials in the building was investigated separately as part of an ACM Survey. The findings and conclusions presented in this report apply only to the recognized environmental conditions assessed.
2.4 Limitations and Exceptions of Assessments

The report has been prepared in accordance with generally accepted environmental methodologies referred to in ASTM 1903-97 (Re-approved 2002), and contains all of the limitations inherent in these methodologies. No other warranties, expressed or implied, are made as to the professional services provided under the terms of our contract and included in this report.

2.5 Limiting Conditions and Methodologies Used

No ESA can eliminate all uncertainty. Furthermore, any sample, either surface or subsurface, taken for chemical analysis may or may not be representative of a larger population. Professional judgment and interpretation are inherent in the process and uncertainty is inevitable. Additional assessment may be able to reduce the uncertainty.

Even when Phase II ESA work is executed with an appropriate site-specific standard of care, certain conditions present especially difficult detection problems. Such conditions may include, but are not limited to, complex geological settings, the fate and transport characteristics of certain hazardous substances and petroleum products, the distribution of existing contamination, physical limitations imposed by the location of utilities and other man-made objects, and the limitations of assessment technologies.

Phase II ESAs do not generally require an exhaustive assessment of environmental conditions on a property. There is a point at which the cost of information obtained and the time required to obtain it outweigh the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. If hazardous substance or petroleum releases are confirmed on a parcel of property, the extent of further assessment is related to the degree of uncertainty that is acceptable to the user with respect to the real estate transaction.

Measurements and sampling data only represent the site conditions at the time of data collection. Therefore, the usability of data collected as part of this Phase II ESA may have a finite lifetime depending on the application and use being made of the data. An environmental professional should evaluate whether the generated data are appropriate for any subsequent use beyond the original purpose for which it was collected.

3.0 BACKGROUND

3.1 Site Description and Features

The subject property is located at 55 Garden Street, Columbus, Ohio, 45123 and consists of gasoline dispensing station and convenience store. It is approximately 1.1 acres in size and rectangular in shape. The legal description of the subject property is Section 17, Lot 643, Parcel 23. The area is zoned as C1. The general area of the property is used for mixed commercial and residential.
3.2 Physical Setting

The subject property is currently used for:

- Retail (gasoline dispensing station and convenience store)

3.3 Site History and Land Use

The following buildings and structures are located on the subject property:

<table>
<thead>
<tr>
<th>Age</th>
<th>No. of Stories</th>
<th>Usage</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1</td>
<td>convenience store</td>
<td>The building is concrete slab-on-grade with concrete tilt-up construction.</td>
</tr>
</tbody>
</table>

In 1946 property was used as a gasoline dispensing station. Prior to 1946 the property was used as vegetable stand and farm.

3.4 Adjacent Property Use

The current adjoining property uses are:

<table>
<thead>
<tr>
<th>North:</th>
<th>Warehouse (one storey commercial warehouse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South:</td>
<td>Residential (detached single family homes)</td>
</tr>
<tr>
<td>East:</td>
<td>Residential (live storey apartment building)</td>
</tr>
<tr>
<td>West:</td>
<td>Retail (strip mall)</td>
</tr>
</tbody>
</table>

3.5 Summary of Previous Assessments

The following previous assessments were reviewed for the property:

- Phase I ESA, Project Number 2004-678, dated December 8, 2004 completed by GAEA Technologies Ltd.

The recognized on-site environmental concerns assessed as part of this Phase II ESA were the presence of underground fuel storage tanks.

The following recognized environmental concerns for the subject property were not assessed as part of this Phase II ESA: the possible presence of asbestos containing materials in the building was investigated separately as part of an ACM Survey. The findings and conclusions presented in this report apply only to the recognized environmental conditions assessed.
4.0 PHASE II ACTIVITIES

4.1 Scope of Assessment

4.1.1 Supplemental Record Review

The following supplemental records were reviewed:

- State LUST List

4.1.2 Conceptual Site Model and Sampling Plan

The conceptual site model takes into consideration the potential distributions of contaminants with respect to the properties, behaviours and fate and transport characteristics of the contaminant in a setting such as that being assessed. The sampling plan was designed to provide for the collection of potentially contaminated environmental media, if they occur, at locations and depths where the highest concentrations are likely to occur.

This conceptual site model and sampling plan were developed in general accordance with ASTM Standard D 5730: Guide to Site Characteristics for Environmental Purposes With Emphasis on Soil, Rock, The Vadose Zone and Ground Water.

Personal health and safety precautions were followed in accordance with applicable federal and state law or local equivalents and any requirements imposed by the owner, occupant, or field personnel.

4.1.3 Chemical Testing Plan

The chemical testing plan was designed to detect the contaminants suspected to be present in the samples collected. This testing plan included tests which provide quality assurance (QA) and techniques that provide quality control (QC) over the chemical analysis. A completed chain of custody record accompanied each sample shipment to the analytical laboratory. Chain of custody records provide written documentation regarding sample collection and handling, identify the persons involved in the chain of sample possession, and a written record of requested analytical parameters.

4.1.4 Deviations from the Work Plan

There were no deviations to the work plan.
4.2 Field Explorations and Methods

4.2.1 Test Pits

No test pits were excavated as part of this Phase II ESA.

4.2.2 Test Borings

A total of 5 borings were excavated at the approximate locations shown on Figure 2. The test pits were excavated on June 12, 2005. The borings were drilled to a depth of 17.5 to 19.8 feet below grade. Four borings were drilled at the corners of the property and one boring was drilled between the pump islands.

Soil samples were recovered at 2 foot intervals using a split-spoon sampler and visually classified. The soil samples were analysed for combustible vapour concentrations using a Gastechtor Model No. 1238ME portable hydrocarbon surveyor, calibrated to hexane. This information is presented on the boring logs in Appendix X1.

4.2.3 Monitoring Well Installations

Groundwater monitoring wells were installed in the following borings: B101, B103 and B104. These monitoring wells consisted of 2 inch diameter PVC pipe which included a slotted screen at the bottom end of each pipe. For construction details, see the boring logs in Appendix X1.

On June 17, 2005, the groundwater wells were monitored for groundwater levels. After well development, groundwater samples were collected from each of the three monitoring wells with dedicated samplers and submitted for laboratory analysis.

1) Ground water elevation measurement

The following groundwater elevations were measured in the monitoring wells:

- 219.1 feet in B101
- 219.9 feet in B103
- 219.4 feet in B104

2) Ground water flow direction

The groundwater flow direction was determined as northwest.

4.2.4 Other

No other assessment activities were conducted.
4.3 Sampling and Chemical Analyses

4.3.1 Soil

The following soil samples were submitted for chemical analyses: B101-5, B101-6, B101-7, B103-6, B103-7, and B104-6. The soil samples were submitted to EnviroLab for chemical analyses. The soil samples were analysed for concentrations of benzene, toluene, ethylbenzene, xylenes (BTEX).

4.3.2 Ground water

The following groundwater samples were submitted for chemical analyses: B101-GW1, B103-GW1, and B104-GW1. The groundwater samples were submitted to EnviroLab for chemical analyses. The groundwater samples were analysed for concentrations of benzene, toluene, ethylbenzene, xylenes (BTEX).

4.3.3 Other

No other chemical analyses was performed.

5.0 EVALUATION AND PRESENTATION OF RESULTS

5.1 Subsurface Conditions

5.1.1 Geologic Setting

The subject property is located in the Ozark Mountains physiographic province. Bedrock is typically Canadian series consisting mainly of marine carbonates. Regional geography in this area is described as rolling meadows and dense woodland hills.

The stratigraphic information recorded during the investigation is presented on the test pit and borehole records in Appendix X1. Beneath the asphalt is approximately 2 feet of compacted granular fill over 4 to 5 feet of silty sand. Below the silty sand is a 9 to 10 foot thick layer of sandy silt over a layer of silty clay.

5.1.2 Hydrogeologic Conditions

Groundwater was encountered during the investigation at the following locations and depths: B101 at 13.7 feet, B103 at 11.1 feet, and B104 at 13 feet. Based on the groundwater elevations measured the flow direction is northwest.
5.1.3 Verification of Conceptual Site Model

The conceptual site model and sampling plan developed for the site were verified during the Phase II ESA assessment activities.

The QA/QC procedures described in the chemical testing plan were adequate to verify the data acceptability.

5.2 Analytical Data

5.2.1 Soil

Liquid phase petroleum hydrocarbons (LPH) were not observed during excavation of the test pits or drilling of the boreholes.

Petroleum derived vapour concentrations measured in the soil samples recovered during the investigation are presented on the test pit and borehole records in Appendix X1. There are no regulatory criteria for combustible soil vapours; however, soil vapours are often used as a field screening tool to practically identify soils impacted with combustible liquids or petroleum hydrocarbons. Elevated soil vapour concentrations, typically in the LEL range (1 %LEL is equivalent to 110 ppm; the %LEL scale is typically used for soil vapours in excess of 500 ppm), are generally indicative of the presence of volatile combustible products (i.e., gasoline, varsol and to a lesser extent diesel and fuel oil).

The highest level of 15% LEL was observed in the sandy silt in sample 6 of B101.

The soil analytical results along with the applicable or relevant and appropriate requirements ("ARARs") are summarized in Table 2. All of the samples tested had measured concentrations of BTEX below the ARARs.

5.2.2 Ground water

Liquid phase petroleum hydrocarbons (LPH) was not observed at the groundwater table in the monitoring wells.

The groundwater analytical results along with the applicable or relevant and appropriate requirements ("ARARs") are summarized in Table 2. The groundwater samples from B103 and B104 had measured concentrations of BTEX/TPH below the ARARs. The groundwater sample tested from B101 had a measurable benzene and xylene concentration of 0.063 ppm and 0.071 ppm respectively. These concentrations are slightly above the ARARs.

5.2.3 Other

There was no other analytical data obtained during this investigation.
6.0 DISCUSSION OF FINDINGS AND CONCLUSIONS

This assessment has been prepared in accordance with generally accepted environmental methodologies referred to in ASTM 1903-97 (Re-approved 2002), and contains all of the limitations inherent in these methodologies. No other warranties, expressed or implied, are made as to the professional services provided under the terms of our contract and included in this report.

There were no deviations to the work plan.

6.1 Recognized Environmental Conditions

The recognized on-site environmental concerns assessed as part of this Phase II ESA were the presence of underground fuel storage tanks. The assessments performed to evaluate the recognized on-site environmental conditions were 5 borings were drilled and sampled, 3 of the borings had monitoring wells installed, 6 soil samples and 3 groundwater samples were analysed for BTEX. The results of these assessments were all of the soil and two of the groundwater samples had measured concentrations of BTEX below the ARARs, one groundwater sample from B101 had slightly elevated concentrations of benzene and xylene.

The following recognized environmental concerns for the subject property were not assessed as part of this Phase II ESA: the possible presence of asbestos containing materials in the building was investigated separately as part of an ACM Survey. The findings and conclusions presented in this report apply only to the recognized environmental conditions assessed.

6.2 Affected Media

Based on the results of this assessment, no impacted soil above applicable or relevant and appropriate requirements ("ARARs") was identified.

Based on the results of this assessment, impacted groundwater above applicable or relevant and appropriate requirements ("ARARs") was identified. The measured concentrations of benzene and xylene were slightly above the ARARs in monitoring well B101.

6.3 Evaluation of Media Quality

The data gathered during this assessment is sufficient to determine whether hazardous substances or petroleum products were released or disposed at the property.

With respect to the recognized environmental conditions assessed, hazardous substances or petroleum products have been released or disposed on the property. The groundwater sample from monitoring well B101 had concentrations of benzene and xylene slightly above the ARARs.

6.4 Other Concerns

There were no other concerns identified during this Phase II ESA.
7.0 **RECOMMENDATIONS**

Based on the results of this assessment the following further work is recommended:

- That the groundwater continue to be monitored for BTEX, as well as Biological Oxygen Demand (BOD), Dissolved Oxygen (DO), NO5, and SO4 on an annual basis to verify that natural attenuation is occurring and that the benzene and xylene concentrations decline in monitoring well B101.
8.0 CLOSURE

This report has been prepared for the sole benefit of ACME Oil and Gas Ltd. The report may not be relied upon by any other person or entity without the express written consent of GAEA Technologies and ACME Oil and Gas Ltd.

Respectfully submitted,

GAEA Technologies Ltd.

Prepared by: Reviewed by:

John Smith Jane Doe
Sr. Assessor Manager
REFERENCES AND SOURCES OF INFORMATION

The following references may have been used in the preparation of this report.

ASTM Standard D 5730 Guide to Site Characteristics for Environmental Purposes With Emphasis on Soil, Rock, The Vadose Zone and Ground Water

ASTM Standard D 653 Terminology Relating to Soil, Rock and Contained Fluids

ASTM Standard D 4750 Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well. (Observation Well)

ASTM Standard E 1527 Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process

ASTM Standard E 1528 Practice for Environmental Site Assessments: Transaction Screen Process
TABLES

TABLE 1: Location, Depth and Type of Samples Collected

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Type</th>
<th>Location</th>
<th>Depth (ft)</th>
<th>Date Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>B101-5</td>
<td>Soil</td>
<td>B101</td>
<td>11</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B101-6</td>
<td>Soil</td>
<td>B101</td>
<td>13.5</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B101-7</td>
<td>Soil</td>
<td>B101</td>
<td>16</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B103-6</td>
<td>Soil</td>
<td>B103</td>
<td>13.5</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B103-7</td>
<td>Soil</td>
<td>B103</td>
<td>16</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B104-6</td>
<td>Soil</td>
<td>B104</td>
<td>13.5</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B101-GW1</td>
<td>Groundwater</td>
<td>B101</td>
<td>NA</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B103-GW1</td>
<td>Groundwater</td>
<td>B103</td>
<td>NA</td>
<td>June 12, 2005</td>
</tr>
<tr>
<td>B104-GW1</td>
<td>Groundwater</td>
<td>B104</td>
<td>NA</td>
<td>June 12, 2005</td>
</tr>
</tbody>
</table>

TABLE 2: Summary of Soil Analytical Results – BTEX (ppm)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B101-5</th>
<th>B101-6</th>
<th>B101-7</th>
<th>B103-6</th>
<th>B103-7</th>
<th>B104-6</th>
<th>ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Toluene</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>1.5</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>5.5</td>
</tr>
<tr>
<td>Xylenes</td>
<td>< 0.04</td>
<td>< 0.04</td>
<td>< 0.04</td>
<td>< 0.04</td>
<td>< 0.04</td>
<td>< 0.04</td>
<td>1.2</td>
</tr>
</tbody>
</table>

TABLE 3: Summary of Groundwater Analytical Results – BTEX (ppb)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B101-GW1</th>
<th>B103-GW1</th>
<th>B104-GW1</th>
<th>ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Toluene</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>5</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>5</td>
</tr>
<tr>
<td>Xylenes</td>
<td>< 0.4</td>
<td>< 0.4</td>
<td>< 0.4</td>
<td>5</td>
</tr>
</tbody>
</table>
FIGURES

Figure 1: Site Location
APPENDIX X1: SUBSURFACE EXPLORATION LOGS
Log of Borehole: B101

Project No: 2005-10028
Project: ACME Gas
Client: ACME Oil and Gas Ltd.
Location: 55 Garden Street, Columbus, Ohio
Enclosure: 1
Engineer: John Smith

<table>
<thead>
<tr>
<th>Depth</th>
<th>Symbol</th>
<th>Description</th>
<th>Borehole Number</th>
<th>Lab Analysis</th>
<th>VOC Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Ground Surface</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Asphalt</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Granular Fill</td>
<td>1</td>
<td>BTEX/TPH</td>
<td>130 ppm</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Silty Sand</td>
<td>2</td>
<td>BTEX/TPH</td>
<td>110 ppm</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Silty Clay</td>
<td>3</td>
<td>BTEX/TPH</td>
<td>15 ppm</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Strong Hydrocarbon Odour</td>
<td>4</td>
<td>BTEX/TPH</td>
<td>270 ppm</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Slight Hydrocarbon Odour</td>
<td>5</td>
<td>BTEX/TPH</td>
<td>15 ppm</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>6</td>
<td>BTEX/TPH</td>
<td>280 ppm</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>7</td>
<td>BTEX/TPH</td>
<td>160 ppm</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>8</td>
<td>BTEX/TPH</td>
<td></td>
</tr>
</tbody>
</table>

Well Completion Details:
- Concrete
- Bentonite
- 1st Set Casing
- #2 15' Screen
- June 17, 2005
- 2nd Set 10' Screen

Drill Method: H/S Auger
Datum: Local
Drill Date: June 12, 2005
Checked by: Jane Doe
Hole Size: 6.5
GAEA Technologies Ltd.:
87 Garden Street
Columbus, Ohio
Sheet 1 of 1
Log of Borehole: B102

Project No: 2005-10028
Project: ACME Gas
Client: ACME Oil and Gas Ltd.
Location: 55 Garden Street, Columbus, Ohio
Engineer: John Smith
Enclosure: 2

Subsurface Profile

<table>
<thead>
<tr>
<th>Depth</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ground Surface</td>
</tr>
<tr>
<td>1</td>
<td>Asphalt</td>
</tr>
<tr>
<td>2</td>
<td>Silty Sand</td>
</tr>
<tr>
<td>3</td>
<td>Sandy Silt</td>
</tr>
<tr>
<td>8</td>
<td>Silty Clay</td>
</tr>
<tr>
<td>20</td>
<td>End of Borehole</td>
</tr>
</tbody>
</table>

Description
- **Asphalt:** Well graded granular B fill.
- **Silty Sand:** Fine to medium grained silty sand with clay lenses.
- **Sandy Silt:** Brown, firm, sandy silt with embedded gravel.
- **Silty Clay:** Grey, moist silty clay with embedded sand and gravel.

Sample

<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>Lab Analysis</th>
<th>VOC Concentration ppm</th>
<th>% LEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Drill Method: H/S Auger
Drill Date: June 12, 2005
GAEA Technologies Ltd.
87 Garden Street
Columbus, Ohio
Checked by: Jane Doe
Sheet: 1 of 1
Datum: Local
Log of Borehole: B103

Project No: 2005-10028
Project: ACME Gas
Client: ACME Oil and Gas Ltd.
Location: 55 Garden Street, Columbus, Ohio
Enclosure: 3
Engineer: John Smith

<table>
<thead>
<tr>
<th>Depth</th>
<th>Symbol</th>
<th>Description</th>
<th>Entr.</th>
<th>Type</th>
<th>Lab Analysis</th>
<th>VOC Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ground Surface</td>
<td>Ground Surface</td>
<td>232</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>Asphalt</td>
<td>Granular Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Soil</td>
<td>Well graded granular fill</td>
<td>230</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Silty Sand</td>
<td>Fine to medium grained silty sand with clay lenses.</td>
<td>2</td>
<td>2</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Silty Clay</td>
<td>Grey, moist silty clay with embedded sand and gravel.</td>
<td>215</td>
<td>5</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sandy Silt</td>
<td>Brown, firm, sandy silt with embedded gravel.</td>
<td>225</td>
<td>6</td>
<td>BTEX/TPH</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Strong Hydrocarbon Odour</td>
<td></td>
<td>4</td>
<td>3</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Strong Hydrocarbon Odour</td>
<td></td>
<td>5</td>
<td>4</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Silty Clay</td>
<td>Grey, moist silty clay with embedded sand and gravel.</td>
<td>213</td>
<td>7</td>
<td>BTEX/TPH</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>End of Borehole</td>
<td></td>
<td></td>
<td>8</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>

Well Completion Details:
- Concrete
- 1st Steel Casing
- 2 Slot 10 Screen
- Bentonite
- #3 Sica Sand
- June 17, 2005

Drill Method: H/S Auger
Drill Date: June 12, 2005
Hole Size: 6.5
Datum: Local
Checked by: Jane Doe

GAEA Technologies Ltd.
87 Garden Street
Columbus, Ohio
Sheet 1 of 1
Log of Borehole: B104

Project No: 2005-10028
Project: ACME Gas
Client: ACME Oil and Gas Ltd.
Location: 55 Garden Street, Columbus, Ohio
Enclosure: 4
Engineer: John Smith

Subsurface Profile

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Symbol</th>
<th>Description</th>
<th>Lab Analysis</th>
<th>VOC Concentration (ppm)</th>
<th>Well Completion Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Ground Surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Asphalt</td>
<td>Granular Fill</td>
<td>231</td>
<td>125 250 375</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Silty Sand</td>
<td>Fine to medium grained silty sand with clay lenses.</td>
<td>226</td>
<td>145 175 375</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sandy Silt</td>
<td>Brown, firm, sandy silt with embedded gravel.</td>
<td>216</td>
<td>226 375 480</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Slight Hydrocarbon Odour</td>
<td>207</td>
<td>180 290 375</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Strong Hydrocarbon Odour</td>
<td>200</td>
<td>250 375 480</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Silty Clay</td>
<td>201</td>
<td>180 290 375</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>End of Borehole</td>
<td>202</td>
<td>180 290 375</td>
<td></td>
</tr>
</tbody>
</table>

Drill Method: H/S Auger
Drill Date: June 12, 2005
Hole Size: 6.5
Datum: Local
Checked by: Jane Doe
GAEA Technologies Ltd.
87 Garden Street
Columbus, Ohio
Sheet 1 of 1
APPENDIX X2: LABORATORY REPORTS
APPENDIX X3: OTHER INFORMATION