

GAEA Technologies Ltd,

221 Laurel Street Cambridge, Ontario Canada N3H 3Y6

Tel: (613) 900-1950

Email: sales@gaeatech.com support@gaeatech.com

www.gaeatech.com

POLLUTE

Version 8

© 2021 GAEA Technologies Ltd.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of GAEA Technologies.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. GAEA Technologies makes no claim to these trademarks.

While every precaution has been taken in the preparation of this document, GAEA Technologies assumes no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs that may accompany it. In no event shall GAEA Technologies be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: September 2021 in Canada.

Description

The results obtained from POLLUTE are compared to those obtained by an analytical solution developed by Tang et al. (1981) for a single fracture system. A conservative contaminant is considered with a constant source concentration of 1. The fractures are 10 μ m wide, have a groundwater (seepage) velocity along the fracture of 730 m/a, a dispersivity of zero, and a diffusion coefficient along the fractures of 0.077 m²/a. In this comparison the fracture spacing is 1 m. Because of the very low matrix diffusion coefficient there is no interaction between fractures over the time frame considered, thus the same result would be obtained if the fracture spacing were increased to 10 m. The Darcy velocity, which occurs along the fractures, can be calculated by multiplying the fractures per m times the fracture width times the seepage velocity:

$$v_a = 10x10^{-6} * 1 * 730 = 0.73x10^{-2}$$

A porosity of 0.05 and tortuosity (the ratio of effective diffusion coefficient to the molecular diffusion coefficient in water) of 0.0000983 were assumed for the matrix material. The matrix diffusion coefficient is then given by multiplying the fracture diffusion coefficient and the tortuosity:

 $D_m = 0.077 * 0.0000983 = 7.5691 \times 10^{-6}$

The following parameters are defined for this example:

Property	Symbol	Value	Units
Darcy Velocity	V _a	7.30E-03	m/a
Soil Thickness	н	400	m
Number of Sub-layers		4	-
Fracture spacing	2H ₁	1	m
Fracture opening	2h ₁	10E-6	m
Dispersion along fractures	D _f	0.077	m²/a
Fracture Distribution Coef.	K ^f	0	cm³/g
Matrix Diffusion Coefficient	D _m	7.57E-6	m²/a
Matrix Distribution Coef.	K _m	1	cm³/g
Matrix Porosity	n _m	0.05	-
Dry Density of Matrix		0	g/cm ³
Source Concentration	c _o	1	mg/L

Data Entry

Open the Examples project and open Case 12.

General Tab

		Da			
General Layers Boundaries Special Features Seneral Information Maximum Depth: 400 m · Model Title: Case 12: POLLUTE vs Analytical solution Maximum Depth: 400 m · Darcy Velocity: 0.0073 m/year	Run Auto C On C Off	Save As			
General Information Model Title: Case 12: POLLUTE vs Analytical solution Maximum Depth: 400 Maximum Depth: 600 Maximum Depth:	General Layers Boundaries Special Features	Subsurface Model			
Model Title: Case 12: POLLUTE vs Analytical solution Maximum Depth: 400 m Darcy Velocity: 0.0073 m/year Laplace Transform Parameters TAU: 7 N: 20 SIG: 0 RNU: 2 Run Parameters Output Units: Time Units: Imound to the concentration Units: mg/L マ C All Depths Imound to the concentration units: Img/L マ Image: Concentration units: mg/L マ Pepth Units Image: Concentration units: Img/L マ Image: Concentration units: mg/L マ 100 m Image: Concentration units: Image: Concentration units: Img/L マ Image: Concentration units: Img/L マ 200 m Image: Concentration units: Img/L マ Image: Concentration units: Img/L マ 100 m Image: Concentration units: Image: Concentration units: Image: Concentration units: Img/L マ 200 m Image: Concentration units: Image: Concentration units: Img/L マ Image: Concentration units: Img/L マ	General Information				
Model Title: Case 12: POLLUTE vs Analytical solution Maximum Depth: 400 400 Maximum Depth: 400 400 Maximum Depth: 400 Maximum Depth: 400 Maximum Depth: 400 400 <td></td> <td></td> <td></td> <td></td> <td></td>					
Laplace Transform Parameters TAU: 7 N: 20 SIG: 0 RNU: 2 Run Parameters Output Units: Time Units: m C oncentration Units: mg/L ▼ C All Depths Image: Specified Depths Image: Concentrations at Specified Times C Maximum Concentrations + Ad Delete + + Ad Delete Depth Units Time Units 25 year 200 m 300 m 400 m 100 10	Model Title: Case 12: POLLUTE vs Analytical s	vlution		Maximum D	epth: 400 m 💌
Itaplace Transform Parameters TAU: 7 N: 20 SIG: 0 0 Maximum Concentration Units: Image: Concentration Units: </td <td></td> <td></td> <td></td> <td>Darcy Vel</td> <td>ocity: 0.0073 m/year 🔻</td>				Darcy Vel	ocity: 0.0073 m/year 🔻
TAU: 7 N: 20 SIG: 0 RNU: 2 Output Units: Time Units: year Depth Units: m Concentration Units: mg/L C All Depths 6 Specified Times C Maximum Concentrations Maximum Concentrations + Add Delete Depth Units 100 m 200 m 300 m 400 m	Laplace Transform Parameters				
Output Units: Time Units: Image: Concentration Units: Image: Concentraticon Units: Image: C	TAU: 7 N: 20	SIG: 0 RNU: 2			
C All Depths Image: C Specified Depths Image: C Maximum Concentrations + Add Delete + Add Delete Depth Units Time Units 100 m 25 year 300 m - - 400 m - -	Run Parameters	Output Units Time Units:	year 🔻 [Depth Units: M	Concentration Units: mg/L 💌
+ Add > Delete + Add > Delete Depth Units Time Units 100 m 25 year 300 m	C All Depths	s	 Concentra 	ations at Specified Times	C Maximum Concentrations
Depth Units 100 m 200 m 300 m 400 m	🕇 + Add 🛛 🗙 Delete		🛛 🕂 Add 💙	K Delete	
100 m 200 m 300 m 400 m	Depth Units		Time	Units	
200 m 300 m 400 m	100 m		25	year	
300 m 400 m	200 m				
400 m	300 m				
	400 m				

The general data for this example can be specified on the General tab. The Darcy velocity can be specified as 0.73×10^{-2} . The Run Parameters can be specified at the bottom of the tab. In this example the concentrations will be calculated at 25 years and at 4 depths: 100, 200, 300, and 400 m.

Layers Tab

4

5

Name		Sublayers	Thickness	Thickness Units	Dry Density	Density Units	Porosity	Hydrodynamic Dispersion Coefficient	Dispersion Units	Distribution Coefficient	Distribution Units	Fractures	Symb
		4	400	m	0	g/cm ³	0.05	7.569E-6	m²/a	0	m³/kg	1	¥.
tures													
imension	Spacing	Ope	ning Size	Number to Su	m D	ispersion Co	efficient: 0.	077 m²/a	•				
1	1		1E-5	10	Dis	stribution Co	efficient: 0						
					010								

The layer data for the layer can be specified on the Layers tab. The data for the one dimensional fractures can be specified when the layer is selected. The fracture opening size is the gap between the walls of the fracture.

Boundaries Tab

General Lavers Boundaries Special Features Subsurface Model	
Top Boundary	Bottom Boundary
C Zero Flux	C Zero Flux
 Constant Concentration 	C Constant Concentration
C Finite Mass	C Fixed Outflow Velocity
	Infinite Thickness
Concentration 1 mg/L	Base Symbol

The boundary conditions for the model can be specified on the Boundaries tab. In this example, the top boundary has a constant concentration and the bottom boundary is represented by a layer of infinite thickness.

Special Features

6

The maximum sublayer thickness for this example can be specified using the Special Features tab.

Maximum Sublayer Thickness

The default maximum sublayer thickness is 5 depth units. This maximum is set to avoid problems with exponential overflow, which can sometimes occur if the sublayers are too thick. To override the default maximum sublayer thickness the Maximum Sublayer Thickness feature is used, when over riding this default the user takes the chance that the program will "crash" or give false results - caveat emptor.

7

Run Auto C On C Off Save Base As	
General Layers Boundaries Special Features Subsurface Model	
Initial Concentration Profile Maximum Sublayer Thickness	
✓ Maximum Sublayer Thickness Warning: When overriding the default maximum layer thickness the program may crash or	r give false results.
Non-linear Sorption	
Passive Sink Maximum Layer Thickness: 100.01	
Print Mass in Base	
Radioactive/Biological Decay	
Time Varying Properties	
Monte Carlo Simulation	
Sensitivity Analysis	

To specify the maximum sublayer thickness check the Maximum Sublayer Thickness box item from the Special Features tab, By specifying the maximum sublayer thickness as 100.01 the sublayers can be up to 100.01 units thick. In this example the sublayers are 100 units thick.

Model Execution

⊫⇒Run

To run the model and calculate the concentrations press the Run button on the toolbar.

Model Output

After the model has been executed, the output for the model will be displayed.

Output Comparison

The results given by analytical solution can be compared to the output by creating a new imported dataset using *File > New > Imported Dataset*.

Example 12: POLLUTE vs. Analytical Solution

The calculated concentrations from the POLLUTE program and the analytical solution by Tang et al. (1981) are listed below. Both solutions give identical results.

Depth	POLLUTE	Analytical Solution
(m)	(mg/L)	(mg/L)
100	0.593	0.593
200	0.2838	0.2838
300	0.1069	0.1069
400	0.0311	0.0311

Depth vs Concentration

The Depth vs Concentration chart can be displayed by selecting the Depth vs Concentration item for the Chart Type.

Output Listing

To display the output as a text listing that will show the calculated concentrations as numbers, click on the List tab.

POLLUTEv8

Version 8.00 Beta Copyright (c) 2021 GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

Case 12: POLLUTE vs Analytical solution

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.0073 m/year

Layer Properties

Layer	Fracture Spacing 1	Opening Size 1	Number 1	Fracture Spacing 2	Opening Size 2	Number 2	Fracture Spacing 3	Opening Size 3	Number 3
Soil	1 m	1E-5 m	10						

Layer	Dispersion Coefficient in Fractures	Distribution Coefficient in Fractures	Fracture Porosity	Retardation Coefficient in Matrix
Soil	0.077 m²/a	0 m³/kg	1.0000E-05	1.0000E+00

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Soil	400 m	4	7.569E-6 m²/a	0.05	0 m³/kg	0 g/cm ³

Boundary Conditions

10

Constant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
25	0.000E+00	1.000E+00
	1.000E+02	5.930E-01
	2.000E+02	2.838E-01
	3.000E+02	1.069E-01
	4.000E+02	3.111E-02

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results obtained with this program for any specific case.