

GAEA Technologies Ltd,

221 Laurel Street Cambridge, Ontario Canada N3H 3Y6

Tel: (613) 900-1950

Email: sales@gaeatech.com support@gaeatech.com

www.gaeatech.com

POLLUTE

Version 8

© 2021 GAEA Technologies Ltd.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of GAEA Technologies.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. GAEA Technologies makes no claim to these trademarks.

While every precaution has been taken in the preparation of this document, GAEA Technologies assumes no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs that may accompany it. In no event shall GAEA Technologies be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: September 2021 in Canada.

Description

In this example a phase change in the secondary leachate collection system is modelled using the Phase Change special feature. The landfill has a secondary leachate collection system and liner which overlies a 1 meter thick aquifer. A phase change occurs in the secondary leachate collection system at the interface between the unsaturated and saturated zones, assumed to be .2 and .1 meters thick respectively.

The landfill contains a constant concentration of DCM, which experiences biological decay in the landfill, primary and secondary liners, and the aquifer. A half-life of 10 years in the landfill and 40 years everywhere else is assumed. No biological decay is assumed to occur in the secondary leachate collection system.

The diffusion coefficient of the DCM in the unsaturated zone of the secondary leachate collection system is assumed to be $300 \text{ m}^2/a$, and in the saturated zone to be $100 \text{ m}^2/a$ (to represent a high degree of mixing in the saturated zone). The phase change parameter for the DCM in the unsaturated zone is Henry's Constant which is assumed to be 0.1 for DCM in this example.

Two layers are used to model the unsaturated and saturated zones of the .3 meter thick secondary leachate collection system. The first layer represents the unsaturated zone and is .2 meters thick. And the second layer represents the saturated zone and is .1 meter thick.

A Darcy velocity of 0.003 m/a is assumed through the primary liner, and 0 m/a through the secondary liner. Thus, for a 500 meter long landfill the outflow rate in the saturated portion of the secondary leachate collection system would be:

Outflow Rate = (500 * 0.003) / 0.1 = 15 m/a

This example is for a hypothetical landfill and is used to illustrate how to prepare an input file and run an analysis using the Phase Change option. The example is not a prescription for modeling contaminant migration during operation of a landfill. Each landfill has its own unique characteristics and no general prescription can be made. The Phase Change option should only by used by someone with the hydrogeologic background necessary to appreciate the subtleties associated with the physical situation and the steps necessary for appropriate modeling of this physical situation.

Data Entry

Open the Examples project and open Case 18.

General Tab

Run Auto C On Off Save Save As	
General Layers Boundaries Special Features Subsurface Model	
General Information	
Model Title: Case 18: Phase Change	Maximum Depth: 2.65 m
	Darcy Velocity: 1 m/year 💌
Laplace Transform Parameters	
	2
TAU: 1/ N: 1/20 SIG: 10 RNU	2
Run Parameters Output Un	its
Time U	its: yr 💌 Depth Units: m 💌 Concentration Units: mol/m3 💌
All Depths C Specified Depths	Concentrations at Specified Times C Maximum Concentrations
	+ Add X Delete
	Time Units
	80 yr
	85 yr
	90 yr
	95 yr
	100

The general data for this example is specified on the General tab. The Darcy velocity will be displayed but will be ignored when the Passive Sink option is selected.

Layers Tab

⇔Run Auto C On	○ Off	L_I Save	Save A	s								
General Layers Boundar	Seneral Layers Boundaries Special Features Subsurface Model											
🕂 Add 🗙 Delete 🛛 🕻	Сору 📄	Paste 📔 🕹 I	Move Down	🕇 Move Up								
Name	Sublayers	Thickness	Thickness Units	Dry Density	Density Units	Porosity	Hydrodynamic Dispersion Coefficient	Dispersion Units	Distribution Coefficient	Distribution Units	Fractures	Symbol
Primary Liner	4	0.6	m	1.9	g/cm ³	0.4	0.02	m²/a	1.5	cm³/g	None	111
Unsaturated Collection	4	0.2	m	1.9	g/cm³	0.45	300	m²/a	0	cm³/g	None	
Saturated Collection	4	0.1	m	1.9	g/cm ³	0.45	100	m²/a	0	cm³/g	None	
Secondary Liner	4	0.75	m	1.9	g/cm³	0.4	0.02	m²/a	1.5	cm³/g	None	111

The layer data for this example consists of four layers: a primary liner, a unsaturated collection system, a saturated collection system, and a secondary liner. The data for these layers is specified on the Layers tab.

Boundaries Tab

🔿 Run Auto C On 💿 Off 🛛 🔚 Save As					
General Layers Boundaries Special Features Subsurface Model					
Top Boundary	Bottom Boundary				
C Zero Flux C Constant Concentration C Finite Mass	C Zero Flux C Constant Concentration Fixed Outflow Velocity C Infinite Thickness				
Concentration 0.04 mol/m ³	Landfill Length: 500 m Landfill Width: 500 m Base Thickness: 1 m Base Porosity: 0.3 Base Outflow Velocity: 3 m/a Base Symbol				

The boundary conditions for this example are a constant concentration top boundary and a fixed outflow bottom boundary. These boundaries can be specified on the Boundaries tab.

Special Features

The biological decay and passive sink data for this model can be entered using the Special Features tab.

Passive Sink

Initial Concentration Profile Passive Sink Radioactive/Biological Decay Maximum Sublayer Thickness Inflow Rate Phase Change Non-linear Sorption No C Yes Passive Sink Interval Type C Depth Intervals C Layers Print Mass in Base + Add > Delete Radioactive/Biological Decay Top Depth Top Bottom Darcy Darcy Rate of Phase Interval Type O m 0.6 m 0.003 m/a 0 m/a 1 Monte Carlo Simulation 0.8 m 0.9 m 0.003 m/a 1 1 0.9 m 1.65 m 0 m/a 1 1	Run Auto C On Off General Layers Boundaries Special	Features Sub	Save As	s del							
Image: Constructive/Biological Decay Top Depth Top Depth Bottom Depth Darcy Used Rate of Removal Units Rate of Removal Units Parameter Units Image: Top Depth Top Depth Depth Depth Depth Depth Depth Depth Depth Units Parameter Units Image: Monte Carlo Simulation 0.6 m 0.003 m/a 0 m/a 1 0.8 m 0.9 m 0.003 m/a 15 m/a 1 0.9 m 1.65 m 0 m/a 0 m/a 1	Initial Concentration Profile Maximum Sublayer Thickness Non-linear Sorption Passive Sink Print Mass in Base	Passive Sink	Radioad C Yes pe X Delete	tive/Biologic s	C No	ange • Yes ils (C Layers				
0 m 0.6 m 0.003 m/a 0 m/a 1 Monte Carlo Simulation 0.6 m 0.8 m 0.003 m/a 0 m/a 0.1 Sensitivity Analysis 0.8 m 0.9 m 0.003 m/a 15 m/a 1 0.9 m 1.65 m 0 m/a 0 m/a 1	✓ Radioactive/Biological Decay ☐ Time Varying Properties	Top Depth	Top Depth Units	Bottom Depth	Bottom Depth Units	Darcy Velocity	Darcy Velocity Units	Rate of Removal	Rate of Removal Units	Phase Parameter	
Monte Carlo Simulation 0.6 m 0.8 m 0.003 m/a 0 m/a 0.1 Sensitivity Analysis 0.8 m 0.9 m 0.003 m/a 15 m/a 1 0.9 m 1.65 m 0 m/a 0 m/a 1		0	m	0.6	m	0.003	m/a	0	m/a	1	
Sensitivity Analysis 0.8 m 0.9 m 0.003 m/a 15 m/a 1 0.9 m 1.65 m 0 m/a 0 m/a 1	Monte Carlo Simulation	0.6	m	0.8	m	0.003	m/a	0	m/a	0.1	
0.9 m 1.65 m 0 m/a 0 m/a 1	Sensitivity Analysis	0.8	m	0.9	m	0.003	m/a	15	m/a	1	
		0.9	m	1.65	m	0	m/a	0	m/a	1	

The passive sink data is used to specify the Phase parameter and the horizontal and vertical Darcy velocities. In this example there are four depth intervals for the passive sink.

Radioactive/Biological Decay

Run Auto C On Off Save Save As							
General Layers Boundaries Special	Seneral Layers Boundaries Special Features Subsurface Model						
Initial Concentration Profile	Passive Sink	Radioactive/E	Biological Decay				
Maximum Sublayer Thickness	Source Decay	C No	,	Base De	cay O r	No	
Non-linear Sorption							
✓ Passive Sink	Source Half-Life	: 10	yr 💌	Base Hal	f-Life: 40	yr	•
Print Mass in Base	Interval Type		Output Depth Interv	als	C Layers		
Radioactive/Biological Decay	🕂 Add 🔀	Delete					
Time Varying Properties	Top Depth	Top Depth Units	Bottom Depth	Bottom Depth Units	Half-Life	Half-Life Units	
Monte Carlo Simulation	0	m	0.6	m	40	yr	
Sensitivity Analysis	0.6	m	0.9	m	0	yr	
	0.9	m	1.65	m	40	yr	

The data for the biological decay of the DCM can be specified by selecting the Radioactive/Biological Decay option on the Special Features tab. In this example there are three decay intervals: one for the primary liner, one for the unsaturated and saturated collection system, and one for the secondary liner.

Model Execution

⊫⇒Run

To run the model and calculate the concentrations press the Run button on the toolbar.

Model Output

After the model has been executed, the output for the model will be displayed.

Depth vs Concentration

The Depth vs Concentration chart can be displayed by selecting the Depth vs Concentration item for the Chart Type.

Output Listing

To display the output as a text listing that will show the calculated concentrations as numbers, click on the List tab.

POLLUTEv8

Version 8.00 Beta Copyright (c) 2021 GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

Case 18: Phase Change

THE PASSIVE SINK OPTION HAS BEEN USED. NOTE THE USER IS RESPONSIBLE FOR ENSURING THAT VELOCITY CHANGES ARE CONSISTENT WITH THE PASSIVE SINK.

8

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Primary Liner	0.6 m	4	0.02 m²/a	0.4	1.5 cm³/g	1.9 g/cm ³
Unsaturated Collection System	0.2 m	4	300 m²/a	0.45	0 cm³/g	1.9 g/cm ³
Saturated Collection System	0.1 m	4	100 m²/a	0.45	0 cm³/g	1.9 g/cm ³
Secondary Liner	0.75 m	4	0.02 m²/a	0.4	1.5 cm³/g	1.9 g/cm ³

Boundary Conditions

Constant Concentration

Source Concentration = 0.04 mol/m³

Fixed Outflow Bottom Boundary

Landfill Length = 500 m Landfill Width = 500 m Base Thickness = 1 m Base Porosity = 0.3 Base Outflow Velocity = 3 m/a

Radioactive or Biological Decay

Radioactive or Biological Decay Source Half Life = 10 yr Radioactive or Biological Decay Base Half Life = 40 yr

First Order Radioactive or Biological Decay Depth Ranges

Minimum Depth	Maximum Depth	Half Life
0 m	0.6 m	40 yr
0.6 m	0.9 m	0 yr
0.9 m	1.65 m	40 yr

Velocity and Sink Profile

Time Period	Minimum Depth	Maximum Depth	Vertical Velocity	Horizontal Outflow	Phase Parameter
01	0 m	0.6 m	0.003 m/a	0 m/a	1
	0.6 m	0.8 m	0.003 m/a	0 m/a	0.1
	0.8 m	0.9 m	0.003 m/a	15 m/a	1
	0.9 m	1.65 m	0 m/a	0 m/a	1

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
yr	m	mol/m3

Example 18: Phase Change

80	0.000E+00	1.563E-04
	1.500E-01	4.912E-04
	3.000E-01	7.185E-04
	4.500E-01	8.173E-04
	6.000E-01	8.009E-04
	6.500E-01	8.009E-04
	7.000E-01	8.009E-04
	7.500E-01	8.009E-04
	8.000E-01	8.009E-04
	8.250E-01	8.009E-04
	8.500E-01	8.009E-04
	8.750E-01	8.008E-04
	9.000E-01	8.008E-04
	1.088E+00	6.483E-04
	1.275E+00	4.620E-04
	1.463E+00	3.048E-04
	1.650E+00	2.079E-04
85	0.000E+00	1.105E-04
	1.500E-01	3.922E-04
	3.000E-01	5.930E-04
	4.500E-01	6.923E-04
	6.000E-01	6.960E-04
	6.500E-01	6.960E-04
	7.000E-01	6.960E-04
	7.500E-01	6.960E-04
	8.000E-01	6.960E-04
	8.250E-01	6.960E-04
	8.500E-01	6.960E-04
	8.750E-01	6.960E-04
	9.000E-01	6.959E-04
	1.088E+00	5.830E-04
	1.275E+00	4.321E-04
	1.463E+00	2.982E-04
	1.650E+00	2.118E-04
90	0.000E+00	7.816E-05
	1.500E-01	3.151E-04
	3.000E-01	4.912E-04
	4.500E-01	5.870E-04
	6.000E-01	6.040E-04
	6.500E-01	6.040E-04
	7.000E-01	6.040E-04
	/.500E-01	6.040E-04
	8.000E-01	6.040E-04
	8.250E-01	6.040E-04
	8.500E-01	6.040E-04
	8.750E-01	6.040E-04
	9.000E-01	6.040E-04
	1.088E+00	5.220E-04
	1.2/5E+00	4.010E-04
	1.463E+00	2.881E-04

10

		Model Output 11
	1.650E+00	2.118E-04
95	0.000E+00	5.527E-05
	1.500E-01	2.547E-04
	3.000E-01	4.083E-04
	4.500E-01	4.985E-04
	6.000E-01	5.239E-04
	6.500E-01	5.239E-04
	7.000E-01	5.239E-04
	7.500E-01	5.239E-04
	8.000E-01	5.239E-04
	8.250E-01	5.239E-04
	8.500E-01	5.239E-04
	8.750E-01	5.239E-04
	9.000E-01	5.239E-04
	1.088E+00	4.659E-04
	1.275E+00	3.698E-04
	1.463E+00	2.754E-04
	1.650E+00	2.087E-04
100	0.000E+00	3.908E-05
	1.500E-01	2.072E-04
	3.000E-01	3.408E-04
	4.500E-01	4.242E-04
	6.000E-01	4.544E-04
	6.500E-01	4.544E-04
	7.000E-01	4.544E-04
	7.500E-01	4.544E-04
	8.000E-01	4.544E-04
	8.250E-01	4.544E-04
	8.500E-01	4.544E-04
	8.750E-01	4.544E-04
	9.000E-01	4.544E-04
	1.088E+00	4.149E-04
	1.275E+00	3.392E-04
	1.463E+00	2.609E-04
	1.650E+00	2.029E-04

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results obtained with this program for any specific case.