

GAEA Technologies Ltd,

221 Laurel Street Cambridge, Ontario Canada N3H 3Y6

Tel: (613) 900-1950

Email: sales@gaeatech.com support@gaeatech.com

www.gaeatech.com

POLLUTE

Version 8

© 2021 GAEA Technologies Ltd.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of GAEA Technologies.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. GAEA Technologies makes no claim to these trademarks.

While every precaution has been taken in the preparation of this document, GAEA Technologies assumes no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs that may accompany it. In no event shall GAEA Technologies be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: September 2021 in Canada.

Description

In this example a multiphase diffusion test performed by Buss et al. (1995) is modelled. This test involved the migration of toluene from a 'constant' source through a 0.1 cm thick HDPE geomembrane, a 18.2 cm thick airspace and into a 12.3 cm water reservoir (assumed to be well mixed). Based on Buss et al. the geomembrane diffusion coefficient was 6 x 10⁻⁸ cm²/s and the phase coefficient was 43.8. From Schwarzenbach et al. (1993), the diffusion coefficient and phase coefficient for toluene in air are 0.088 cm²/s and 0.27 respectively. Based on these parameters the test is modelled for 600 hours and the calculated and observed concentrations in the receptor are provided at the end of this example.

Data Entry

Open the Examples project and open Case 19.

General Tab

Kun Auto O n (• Off) Save Essave As General Layers Boundaries Special Features Subsurface Model				
General Information				
Model Title: Case 19: Multiphase Diffusion Test			Maximum Darcy V	Depth: 30.6 cm 💌 elocity: 0 m/a 💌
Laplace Transform Parameters				
TAU: 7 N: 20 SIG: 0	RNU: 2			
Run Parameters	Output Units Time Units: h	r 💌 De	epth Units: 🖛 💌	Concentration Units: mg/L 🗨
All Depths C Specified Depths		Concentrat	ions at Specified Times	C Maximum Concentrations
		+ Add 🗙	Delete	
		Time	Units	
		1	hr	
		20	hr	
		40	hr	
		70	hr	
		100	hr	
		150	hr	
		200	hr	
		250	hr	
		300	hr	
		350	hr	
		400	hr	
		450	hr	
		500	hr	
		550	hr	
		600	hr	

The general data for this example can be specified on the General tab. If the Passive Sink has been

4 Example 19: Multiphase Diffusion Test

selected yet, the Darcy velocity will be ignored. The run parameters for this example can be specified at the bottom of this tab. In this example the times to calculate the concentration are 1, 20, 40, 70, 100, 150, 200, 250, 300, 350, 400. 450, 500, 550, and 600 hours.

Layers Tab

⇒Run Auto O On O Off asse Base As												
General Layers Boundar	Seneral Layers Boundaries Special Features Subsurface Model											
+ Add Cl Deleter the	Cópy 📄	Paste 📔 🖡 I	Move Down	1 Move Up								
Name	Sublayers	Thickness	Thickness Units	Dry Density	Density Units	Porosity	Hydrodynamic Dispersion Coefficient	Dispersion Units	Distribution Coefficient	Distribution Units	Fractures	Symbol
Geomembrane	1	0.1	cm	2.7	kg/m³	1	0.000216	cm²/hr	0	m³/kg	None	
Air Space	4	18.2	cm	2.7	kg/m³	1	316.8	cm²/hr	0	m³/kg	None	

The layer data for this example consists of two layers: a geomembrane and an air space. The data for these layers can be specified on the Layers tab.

Boundaries Tab

Run Auto C On C Off	
General Layers Boundaries Special Features Subsurface Model	
Top Boundary	Bottom Boundary
 C Zero Flux Constant Concentration Finite Mass 	C Zero Flux C Constant Concentration Fixed Outflow Velocity C Infinite Thickness
Concentration 500 mg/L	Landfill Length: 1 cm Landfill Width: 1 cm Base Thickness: 12.3 cm Base Porosity: 1 Base Outflow Velocity: 0 m/a Base Symbol

The boundary conditions for this example are a constant concentration top boundary and a fixed outflow bottom boundary. These boundaries can be specified on the Boundaries tab.

Special Features

The passive sink data for this model can be entered on the Special Features tab.

Passive Sink

Run Auto C On © Off I Save Base As										
General Layers Boundaries Specia		DSULTACE MO	aei							
🔲 Initial Concentration Profile	Passive Sink									
Maximum Sublayer Thickness	Inflow Rat	e		Phase Cha	nge					
Non-linear Sorption	No	C Ye	S	C No	Yes					
▼ Passive Sink	Interval Ty	pe		pth Interva	ls (Layers				
Print Mass in Base	+ Add	X Delete								
Radioactive/Biological Decay	Top Depth	Тор	Bottom	Bottom	Darcy	Darcy	Rate of	Rate of	Phase	
Time Varying Properties		Depth Units	Depth	Depth Units	Velocity	Velocity Units	Removal	Removal Units	Parameter	
	0	cm	0.1	cm	0	m/a	0	m/a	43.8	
Monte Carlo Simulation	0.1	cm	18.3	cm	0	m/a	0	m/a	0.27	
Sensitivity Analysis										

The passive sink data is used to specify the Phase parameter and the horizontal and vertical Darcy velocities. In this example there are two depth intervals for the passive sink.

Model Execution

⊫⇒Run

To run the model and calculate the concentrations press the Run button on the toolbar.

Model Output

After the model has been executed, the output for the model will be displayed.

Concentration vs Time

The Concentration vs Time chart can be displayed by selecting the Depth vs Concentration item for the Chart Type.

Output Listing

To display the output as a text listing that will show the calculated concentrations as numbers, click on the List tab.

POLLUTEv8

Version 8.00 Beta Copyright (c) 2021 GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

Case 19: Multiphase Diffusion Test

THE PASSIVE SINK OPTION HAS BEEN USED. NOTE THE USER IS RESPONSIBLE FOR ENSURING THAT VELOCITY CHANGES ARE CONSISTENT WITH THE PASSIVE SINK.

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Geomembrane	0.1 cm	1	0.000216 cm ² /hr	1	0 m³/kg	2.7 kg/m ³
Air Space	18.2 cm	4	316.8 cm²/hr	1	0 m³/kg	2.7 kg/m ³

Boundary Conditions

Constant Concentration

Source Concentration = 500 mg/L

Fixed Outflow Bottom Boundary

Landfill Length = 1 cm Landfill Width = 1 cm Base Thickness = 12.3 cm Base Porosity = 1 Base Outflow Velocity = 0 m/a

Velocity and Sink Profile

Time Period	Minimum Depth	Maximum Depth	Vertical Velocity	Horizontal Outflow	Phase Parameter
01	0 cm	0.1 cm	0 m/a	0 m/a	43.8
	0.1 cm	18.3 cm	0 m/a	0 m/a	0.27

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
hr	cm	mg/L
1	0.000E+00	5.000E+02
	1.000E-01	1.771E-04
	4.650E+00	7.045E-05
	9.200E+00	2.687E-05
	1.375E+01	9.110E-06
	1.830E+01	6.369E-07
20	0.000E+00	5.000E+02
	1.000E-01	3.622E+01
	4.650E+00	3.420E+01
	9.200E+00	3.234E+01
	1.375E+01	3.062E+01
	1.830E+01	2.906E+01

40	0.000E+00	5.000E+02
	1.000E-01	8.022E+01
	4.650E+00	7.834E+01
	9.200E+00	7.660E+01
	1.375E+01	7.500E+01
	1.830E+01	7.354E+01
70	0.000E+00	5.000E+02
	1.000E-01	1.387E+02
	4.650E+00	1.370E+02
	9.200E+00	1.355E+02
	1.375E+01	1.342E+02
	1.830E+01	1.329E+02
100	0.000E+00	5.000E+02
	1.000E-01	1.890E+02
	4.650E+00	1.876E+02
	9.200E+00	1.863E+02
	1.375E+01	1.851F+02
	1.830E+01	1.840E+02
150	0.000E+00	5 000E+02
	1.000E-01	2.577E+02
	4.650E+00	2.566E+02
	9 200E+00	2 556E+02
	1 375E+01	2 547E+02
	1.830E+01	2 539E+02
200	0.000E+00	5.000E+02
200	1.000E+00	3.113E+02
	4 650E+00	3 104E+02
	9 200E+00	3.097E+02
	1 375E+01	3 089E+02
	1.830E+01	3 083E+02
250	0.000E+00	5.000E+02
200	1.000E-01	3.530E+02
	4.650E+00	3.523E+02
	9 200E+00	3 517E+02
	1 375E+01	3 512E+02
	1.830E+01	3 507E+02
300	0.000E+00	5.000E+02
	1.000E-01	3.855E+02
	4.650E+00	3.850E+02
	9.200F+00	3.845F+02
	1 375E+01	3 841E+02
	1 830E+01	3.837E+02
350	0.000E+00	5.000E+02
	1.000E-01	4.108E+02
	4.650F+00	4.104F+02
	9.200F+00	4.100F+02
	1 375F+01	4 097F+02
	1 830E+01	4 094F+02
400		5 000F±02
	1.000E-01	4.305F+02
	4 650E+00	4 302E+02
1	1.0002100	

8

		Model Output 9
	9.200E+00	4.299E+02
	1.375E+01	4.297E+02
	1.830E+01	4.294E+02
450	0.000E+00	5.000E+02
	1.000E-01	4.459E+02
	4.650E+00	4.456E+02
	9.200E+00	4.454E+02
	1.375E+01	4.452E+02
	1.830E+01	4.450E+02
500	0.000E+00	5.000E+02
	1.000E-01	4.578E+02
	4.650E+00	4.577E+02
	9.200E+00	4.575E+02
	1.375E+01	4.573E+02
	1.830E+01	4.572E+02
550	0.000E+00	5.000E+02
	1.000E-01	4.672E+02
	4.650E+00	4.670E+02
	9.200E+00	4.669E+02
	1.375E+01	4.668E+02
	1.830E+01	4.666E+02
600	0.000E+00	5.000E+02
	1.000E-01	4.744E+02
	4.650E+00	4.743E+02
	9.200E+00	4.742E+02
	1.375E+01	4.741E+02
	1.830E+01	4.740E+02

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results obtained with this program for any specific case.