

GAEA Technologies Ltd,

221 Laurel Street Cambridge, Ontario Canada N3H 3Y6

Tel: (613) 900-1950

Email: sales@gaeatech.com support@gaeatech.com

www.gaeatech.com

POLLUTE

Version 8

© 2021 GAEA Technologies Ltd.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of GAEA Technologies.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. GAEA Technologies makes no claim to these trademarks.

While every precaution has been taken in the preparation of this document, GAEA Technologies assumes no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs that may accompany it. In no event shall GAEA Technologies be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: September 2021 in Canada.

Description

This example illustrates the use of the program for lateral migration of a radioactive contaminant in a fractured porous rock with a single set of parallel fractures. It considers advective-dispersive transport along the fractures and diffusion into the rock matrix. The deposit is assumed to extend a considerable distance from the source (effectively an infinite distance) but we are only interested here in what happens over the first 50 m after 30 years..

It is assumed that the source concentration, c_o , is 1 unit and that the half life of the radioactive species is 100 years. The source is considered to have a sufficiently large supply that there is no significant change in source concentration due to mass movement into the rock. However the source does experience radioactive decay.

This example is also being used to illustrate the Maximum Sublayer Thickness Special Feature, for specifying sublayer thicknesses that are greater than 5 units.

The following parameters are defined for this example:

Property	Symbol	Value	Units
Darcy Velocity	V _a	0.08	m/a
Fractured Rock Thickness	Η _τ	50	m
Number of Sub-layers		5	-
Fracture spacing	2H ₁	0.05	m
Fracture opening	2h ₁	10	μm
Dispersion along fractures	D _f	6	m²/a
Fracture Distribution Coefficient	K _f	0	cm³/g
Matrix Diffusion Coefficient	D _m	0.0018	m²/a
Matrix Distribution Coefficient	K _m	0	cm³/g
Matrix Porosity	n _m	0.05	-
Dry Density of Matrix		2	g/cm ³
Source Concentration	c _o	1	
Half life of contaminant		100	а
Time period of interest		30	а

Data Entry

Open the Examples project and open Case 7.

General Tab

•							
⇒Run Auto C On Off Baye Baye As							
General Layers B	oundaries Special Fe	eatures Subsurface Model					
General Informati	ion						
Model Title: Case	e 7: Fractured rock an	d radioactive decay		Maximum Depth: 50 m 💌 Darcy Velocity: 0.08 m/year 💌			
aplace Transform	n Parameters						
TAU: Run Parameters	7 N:	40 SIG: 0 RNU: 4 Output Units Time Units:	year 🔻	Depth Units: M 💌 Concentration Units	: mg/L 💌		
C All Depths	Specifie	d Depths	Concent	ntrations at Specified Times C Maximum Co	ncentrations		
🗕 🕂 Add 🛛 🗙 D	elete		+ Add	× Delete			
Depth	Units		Time	Units			
10	m		30	year			
30	m						
40	m						
50	m						

On the General tab the integration parameters for the Laplace Transform have been increased for this example. These parameters will need to be adjusted if the output shows that the default parameters are insufficient.

The times and depths to calculate the concentrations is set in the Run Parameters at the bottom of the tab. The concentrations can either be calculated at specified times or the time of the maximum concentration can be found. In this example the concentrations will be calculated at a time of 30 years and at 4 depths: 10, 30, 40, and 50 m.

Layers Tab

4

Para Auto C On C Off IIISave Based As												
+ Add >> Delete □ Conv □ Pacte ↓ Move Down ↑ Move Lin												
Name	Sublayers	Thickness	Thickness Units	Dry Density	Density Units	Porosity	Hydrodynamic Dispersion Coefficient	Dispersion Units	Distribution Coefficient	Distribution Units	Fractures	Symbo
Fractured Rock	5	50	m	2	g/cm³	0.05	0.0018	m²/a	0	m³/kg	1	篈

On this tab the data for the layer and fracture can be added.

Boundaries Tab

Run Auto C On C Off Bave Save As	
General Layers boundaries Special Features Subsurface Model	Bottom Boundary
 C Zero Flux Constant Concentration C Finite Mass 	C Zero Flux C Constant Concentration C Fixed Outflow Velocity C Infinite Thickness
Concentration 1 mg/L	Base Symbol

In this example, the top boundary has a constant concentration and the bottom boundary is represented as a layer with infinite thickness. For the Infinite Thickness boundary condition, the properties of the last layer in the Layer Data are assumed to extend infinitely.

Special Features

The radioactive decay and maximum sublayer thickness for this example are specified using the Special Features tab.

Maximum Sublayer Thickness

➡Run Auto On Off	Save As
General Layers Boundaries Special	I Features Subsurface Model
Initial Concentration Profile	Maximum Sublayer Thickness Radioactive/Biological Decay
▼ Maximum Sublayer Thickness	Warning: When overriding the default maximum layer thickness the program may crash or give false results.
Non-linear Sorption	
Passive Sink	Maximum Layer Thickness: 10.01
Print Mass in Base	
Radioactive/Biological Decay	
Time Varying Properties	
J Monte Carlo Simulation	
Sensitivity Analysis	

The Maximum Sublayer Thickness special feature allows the user to override the default maximum sublayer thickness of 5 units. This maximum is set to avoid problems with exponential overflow which can sometimes occur if the sublayers are too large. When overriding the default you take the risk that

the program will crash or give false results - caveat emptor!.

To change the maximum sublayer thickness, check the Maximum Sublayer Thickness box on the tab. On the Maximum Sublayer Thickness sub-tab a value of 10.01 is used, each sublayer may be up to 10.01 m thick in this example. The reason for changing this parameter is to allow the calculation of depth at 10 m intervals in the 50 m layer.

Radioactive/Biological Decay

⇔Run Auto C On ⓒ Off	Save 🔤 Save As					
Genera Close the current document (Ctrl+W) Subsurface Mod	el				
🦳 Initial Concentration Profile	Maximum Sublayer Thickn	ess Radioactive/B	iological Deca	У		
Maximum Sublayer Thickness	• Yes C	No	For the second secon	C N	lo	
Passive Sink	Source Half-Life: 100	yr 💌	Base Hal	f-Life: 100	yr	
Print Mass in Base	Interval Type	Depth Interv	als	C Layers		
Radioactive/Biological Decay	🕂 Add 🔀 Delete					
Time Varying Properties	Top Depth Top Dep Units	th Bottom Depth	Bottom Depth Units	Half-Life	Half-Life Units	
Monte Carlo Simulation	0 m	50	m	100	yr	
C Sensitivity Analysis						

To specify the radioactive decay, check the Radioactive/Biological Decay box on the tab. On the Radioactive/Biological Decay sub-tab the source and base decay can be specified. The data for the depth ranges can also be entered. In this example there is one depth range, corresponding to the entire thickness of the layer, with a half-life of 100 years.

Model Execution

⊫⇒Run

To run the model and calculate the concentrations press the Run button on the toolbar.

Model Output

After the model has been executed, the output for the model will be displayed.

Depth vs Concentration

The Depth vs Concentration chart can be displayed by selecting the Depth vs Concentration item for the Chart Type.

Output Listing

To display the output as a text listing that will show the calculated concentrations as numbers, click on the List tab.

POLLUTEv8

Version 8.00 Beta Copyright (c) 2021 GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

Case 7: Fractured rock and radioactive decay

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.08 m/year

Layer Properties

Layer	Fracture Spacing 1	Opening Size 1	Number 1	Fracture Spacing 2	Opening Size 2	Number 2	Fracture Spacing 3	Opening Size 3	Number 3
Fractured Rock	0.05 m	1E-5 m	10						

Layer	Dispersion Coefficient in Fractures	Distribution Coefficient in Fractures	Fracture Porosity	Retardation Coefficient in Matrix
Fractured Rock	6 m²/a	0 m³/kg	2.0000E-04	1.0000E+00

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Fractured Rock	50 m	5	0.0018 m²/a	0.05	0 m³/kg	2 g/cm ³

Boundary Conditions

Constant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Radioactive or Biological Decay

Radioactive or Biological Decay Source Half Life = 100 yr Radioactive or Biological Decay Base Half Life = 100 yr

First Order Radioactive or Biological Decay Depth Ranges

Minimum Depth	Maximum Depth	Half Life
0 m	50 m	100 yr

Laplace Transform Parameters

TAU = 7 N = 40 SIG = 0 RNU = 4

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
30	0.000E+00	8.123E-01
	1.000E+01	8.123E-01
	3.000E+01	8.123E-01
	4.000E+01	7.881E-01
	5.000E+01	2.588E-01

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may

occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results obtained with this program for any specific case.

Below is the results using the default Laplace Transform parameters. These results are clearly wrong! The other values are correct. We can get the correct value at 50 m by increasing the amount of integration as indicated in the previous output listing.

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
30	0.000E+00	8.123E-01
	1.000E+01	8.123E-01
	3.000E+01	8.123E-01
	4.000E+01	7.883E-01
	5.000E+01	-1.384E+02